Math 2FM3, Tutorial 4

Oct 4th, 2015

Annuity-Due

• Payments are made at the beginning of the period.

- Accumulated Value:
- $\dot{s}_{n|i} = (1+i)^n + ... + (1+i) = (1+i) s_{n|i} = [(1+i)^n 1]/d$
- Present Value:
- $\ddot{a}_{n|i} = 1 + v + ... + v^{n-1} = (1 v^n)/d$

Perpetuities

• The infinite period annuity (n goes to infinity) is called a perpetuity.

•
$$a_{\infty|i} = \lim_{n \to \infty} (1 - v^n)/i = 1/i$$

•
$$\ddot{a}_{\infty|i} = \lim_{n \to \infty} (1 - v^n)/d = 1/d$$

Ex 2.2.5

 A perpetuity paying 1 at the beginning of each 6-month period has a present value of 20. A second perpetuity pays X at the beginning of every 2 years. Assuming the same effective annual interest rate, the two present values are equal. Determine X.

- j is 6-month interest rate
- $d_j = j/(1+j)$ is discount
- Since the present value $1^* \ddot{a}_{\infty|i} = 20$, then we get $1/d_i = 20$, then j=1/19.
- The 2-year rate i=(1+j)⁴ -1 =(1+1/19)⁴ -1
- Hence, by X * $\ddot{a}_{\infty|i} = 20$, we can obtain X=20d_i =20i/(1+i)=20*[(1+1/19)⁴ - 1]/(1+1/19)⁴ =3.71.

Ex 2.2.6

 Sally lends 10,000 to Tim. Tim agrees to pay back the loan over 5 years with monthly payments at the end of each month. Sally can reinvest the payments from Tim in a saving account paying interest at 6%, compounded monthly. The yield rate earned on Sally's investment over the five-year period turned out to be 7.45%, compounded semi-annually. What nominal rate of interest, compounded monthly, did Sally charge Tim on the loan?

Ex 2.2.9

 On the first day of every January, April, July and October Smith deposits 100 in an account earning $i^{(4)} = 0.16$. He continues the deposits until he accumulates a sufficient balance to begin withdrawals of 200 every 3 months, starting 3 months after the final deposit, such that he can make twice as many withdrawals as he made deposits. How many deposits are needed?