Math 2FM3, Tutorial 4

Oct 4 ${ }^{\text {th }}, 2015$

Annuity-Due

- Payments are made at the beginning of the period.
- Accumulated Value:
- $s_{n \mid i}=(1+i)^{n}+\ldots+(1+i)=(1+i) s_{n \mid i}=\left[(1+i)^{n}-1\right] / d$
- Present Value:
- $\ddot{a}_{n \mid i}=1+v+\ldots+v^{n-1}=\left(1-v^{n}\right) / d$

Perpetuities

- The infinite period annuity (n goes to infinity) is called a perpetuity.
- $a_{\infty \mid i}=\lim _{n \rightarrow \infty}\left(1-v^{n}\right) / i=1 / i$
- $\ddot{a}_{\infty \mid i}=\lim _{n \rightarrow \infty}\left(1-v^{n}\right) / d=1 / d$

Ex 2.2.5

- A perpetuity paying 1 at the beginning of each 6 -month period has a present value of 20. A second perpetuity pays X at the beginning of every 2 years. Assuming the same effective annual interest rate, the two present values are equal. Determine X.
- j is 6-month interest rate
- $d_{j}=j /(1+j)$ is discount
- Since the present value $1^{*} \ddot{a}_{\infty \mid \mathrm{i}}=20$, then we get $1 / d_{j}=20$, then $\mathrm{j}=1 / 19$.
- The 2 -year rate $\mathrm{i}=(1+\mathrm{j})^{4}-1=(1+1 / 19)^{4}-1$
- Hence, by $X^{*} \ddot{a}_{\infty \mid i}=20$, we can obtain $X=20 d_{i}=20 i /(1+i)=20^{*}\left[(1+1 / 19)^{4}-\right.$ $1] /(1+1 / 19)^{4}=3.71$.

Ex 2.2.6

- Sally lends 10,000 to Tim. Tim agrees to pay back the loan over 5 years with monthly payments at the end of each month. Sally can reinvest the payments from Tim in a saving account paying interest at 6\%, compounded monthly. The yield rate earned on Sally's investment over the five-year period turned out to be 7.45%, compounded semi-annually. What nominal rate of interest, compounded monthly, did Sally charge Tim on the loan?

Ex 2.2.9

- On the first day of every January, April, July and October Smith deposits 100 in an account earning $i^{(4)}=0.16$. He continues the deposits until he accumulates a sufficient balance to begin withdrawals of 200 every 3 months, starting 3 months after the final deposit, such that he can make twice as many withdrawals as he made deposits. How many deposits are needed?

